DESIGN, AUTOMATION & TEST IN EUROPE 9 - 13 March, 2015 · Grenoble · France

The European Event for Electronic System Design & Test

Efficient Attacks on Robust Ring Oscillator PUF with Enhanced Challenge-Response Set

Phuong Ha Nguyen

Durga Prasad Sahoo, Rajat Subhra Chakraborty, Debdeep Mukhopadhyay

Secured Embedded Architecture Laboratory (SEAL) Dept. of Computer Science and Engineering Indian Institue of Technology Kharagpur Kharagpur-721302, INDIA

Outline

- 2 Classic RO-PUF Design
- Enhanced RO-PUF Design
 - Proposed Attacks on Enhanced RO-PUF
- 5 Experimental Results

PUF Introduction

- 2 Classic RO-PUF Design
- 3 Enhanced RO-PUF Design
- 4 Proposed Attacks on Enhanced RO-PUF
- 5 Experimental Results
- 6 Conclusion

What is PUF

- Physically Unclonable Functions (PUF) is a physical embedded entity in hardware device.
- PUF performs a Challenge and Response behavior: for a given challenge **C**, a random response **R** is generated.
- Challenge and Response Behavior of a given PUF can not be physically cloned and it is unique, i.e., different PUF instances have different Challenge-Response Behaviors.

Application of PUF

- Since PUF is a device and can not be cloned, it can be used as a secret in secure system which is assumed to be secure against physical attacks. The secure systems based on stored secrets in Non Volatile Memory (NVM) do not provide this property.
- PUF is used for IP protection because of its uniqueness.
- PUF can be used for key generation, etc.

Security Aspects of PUF

- **Unclonability:** Challenge-Response Behavior of a PUF can not be cloned mathematically and physically.
- **Unpredictability:** Generation of the response **r** for a given challenge **c** should be randomly and unpredictable.
- **Reliability:** Reproduction of response for any challenge **c** should be highly reliable
 - In practice, the reliability of reproduction is always less than 100%
 - Error Correction Circuit (ECC) is used to achieve the high reliability property
 - In ECC, to achieve this goal, the concept helper data W

1 PUF Introduction

- 3 Enhanced RO-PUF Design
- 4 Proposed Attacks on Enhanced RO-PUF
- 5 Experimental Results
- 6 Conclusion

Design Description

- RO-PUF¹ is constructed based on 2×2^m Ring Oscillators (RO).
- Response *r* (1-bit) generated by comparing frequencies of a pair of ROs based on challenge c = (c₁, · · · , c_m), c_i ∈ {0, 1}.

¹G. E. Suh and S. Devadas, "Physical unclonable functions for device authentication and secret key generation," in *Design Automation Conference*. New York, NY, USA: ACM Press, 2007, pp. 9–14

Shortcomings

- Large hardware overhead: 2 × 2^m ROs are required for RO-PUF with *m*-bit challenge.
- Poor reliability property: RO is very sensitive to the environmental variations.

PUF Introduction

Enhanced RO-PUF Design

Proposed Attacks on Enhanced RO-PUF

5 Experimental Results

6 Conclusion

Advantages

Enhanced RO-PUF¹ has the following advantages:

- Small hardware overhead: m ROs are required for RO-PUF with m-bit challenge. This improvement is made based on subset selection concept. A subset of frequencies is chosen instead of a pair of frequencies for a given challenge c.
- High reliability property: ECC-based helper data W is introduced to correct the output of the enhanced RO-PUF.
- It is shown that it is a secure PUF

^IA. Maiti, I. Kim, and P. Schaumont, "A Robust Physical Unclonable Function With Enhanced Challenge-Response Set," *IEEE Transactions on Information Forensics and Security*, vol. 7, no. 1, pp. 333 –345, feb. 2012

Notations

- Set of ROs: m ROs RO_1, \ldots, RO_m which have frequencies f_1, \ldots, f_m , respectively.
- **2** *m*-bit challenge: $\mathbf{c} = (c_1, \ldots, c_m)$.
- 1-bit response: r.
- Security parameters: e, q
- Some state is a real number.
- Quantification value: Q which is a real number. In the original RO-PUF design, quantification function is the comparision function.

Computation of Response r

Computation of Helper Data W

Response Correction Based on W

$$\mathbf{c} = (c_1, \dots, c_m) \qquad Q = \sum_{u=1}^{t-1} \sum_{v=u+1}^t |i_u - i_v| |f_{i_u} - f_{i_v}|^e$$

$$\downarrow (1)$$

$$c_{i_1} = \dots = c_{i_t} = 1 \xrightarrow{(2)} f_{i_1}, \dots, f_{i_t} \xrightarrow{(3)} Q \text{ and } W \xrightarrow{(4)} r$$

Example: Computation of *Q*, *r*

Example: Computation of W

Example: Response Correction Based on W

$$\mathbf{c} = (c_1, \dots, c_m) \qquad Q = \sum_{u=1}^{t-1} \sum_{v=u+1}^t |i_u - i_v| |f_{i_u} - f_{i_v}|^e$$

$$\downarrow (1)$$

$$c_1 = c_2 = c_3 = 1 \qquad \xrightarrow{(2)} \qquad f_1, f_2, f_3 \qquad \xrightarrow{(3)} Q_{noisy} \text{ and } W \xrightarrow{(4)} r$$

 $Q_{noisy} + W = 10.6 + 0.7 = 11.3$, where $Q_{noisy} = 10.6$ (4) Thus r = 0 and r = reference r = 0

$$\begin{vmatrix} r = 1 & r = 0 & r = 1 & \dots & reference r = 0 \\ 0 & & & & \\ q = 1 & & & 2 & 3 \\ \hline \end{matrix}$$

Full Examples

Table : Example of Enrollment and Evaluation Phase Computations (q = 1 and $Q_{noisy} = Q' = Q$)

r _{ref}	0	0	1	1
Q	8.3	8.7	9.3	9.7
ĥ	4	5	4	5
W	-0.8	0.8	-0.8	0.8
Q' + W	7.5	9.5	8.5	10.5
r	0	0	1	1

D PUF Introduction

- 2 Classic RO-PUF Design
- 3 Enhanced RO-PUF Design

Proposed Attacks on Enhanced RO-PUF

5) Experimental Results

6 Conclusion

Security Notion of Enhanced RO-PUF

Definition

[security notion] Let *P* denote a PUF instance with *m*-bit challenge and 1-bit response. A PUF *P* is considered to be secure if and only if there is no algorithm which can predict, for a given challenge **c**, the corresponding response *r*, under the following condition: the accuracy of the prediction is greater than $\frac{1}{2}$.

Observation [1/2]

Table : Relationship between Q, n, δ and W where $Q = n + \delta$

Q	8.3	8.7	9.3	9.7
n	8	8	9	9
δ	0.3	0.7	0.3	0.7
W	-0.8	0.8	-0.8	0.8
δ	0.5 + (-0.8)	$1-\left 0.8-0.5\right $	0.5 + (-0.8)	$1-\left 0.8-0.5\right $

We define $Q = n + \delta$ where $0 < \delta < 1$ and $n = \lfloor Q \rfloor$. We have the following observation

Observation

- The parity of n and reference r: if reference r = 0, then n is even, otherwise n is odd
- **2** Computing δ based on *W*: if *W* < 0, then $\delta = |0.5 + W|$, otherwise d = 1 |W 0.5|

Observation [2/2]

$$\mathbf{c}_{i_{u}i_{v}} = (c_{1}, \dots, c_{m})$$

$$\downarrow (1)$$

$$c_{i_{u}} = c_{i_{v}} = 1 \xrightarrow{(2)} f_{i_{u}}, f_{i_{v}} \xrightarrow{(3)} Q_{i_{u}i_{u}} \xrightarrow{r_{i_{u}i_{v}}} W_{i_{u}i_{v}}$$
(4)
$$\downarrow W_{i_{u}i_{v}}$$
(5)

$$\mathbf{c} \to Q = \sum_{u=1}^{t-1} \sum_{v=u+1}^{t} \frac{Q_{i_u i_v}}{Q_{i_u i_v}}, \text{ where } Q_{i_u i_v} \leftarrow \mathbf{c}_{i_u i_v}$$

Linear relationship between challenge **c** and challenges
$$\mathbf{c}_{i_u i_v}$$

challenge $\mathbf{c} = (1, 1, 1, 0, 0, ..., 0)$, i.e., $c_1 = c_2 = c_3 = 1$
challenge $\mathbf{c}_{12}, \mathbf{c}_{13}, \mathbf{c}_{23}, Q_{12}, Q_{13}, Q_{23}$ and $Q = Q_{123} = Q_{12} + Q_{13} + Q_{23}$
 $Q = n + \delta, Q_{12} = n_{12} + \delta_{12}, Q_{13} = n_{13} + \delta_{13}$ and $Q_{23} = n_{23} + \delta_{23}$
 $n + \delta = (n_{12} + \delta_{12}) + (n_{13} + \delta_{13}) + (n_{23} + \delta_{23})$
 $n + \delta = (n_{12} + n_{13} + n_{23}) + (\delta_{12} + \delta_{13} + \delta_{23})$

Attack 1: With Helper data W

 (\mathbf{c}, r) is associated with (Q, W, n, δ) where $Q = n + \delta$

The Observation tells us:

1. If r = 0, then n is even. Otherwise n is odd

2. If W < 0, then $\delta = |0.5 + W|$. Otherwise $\delta = 1 - |W - 0, 5|$.

We define the parity function p(n) = 0 if n is even and p(n) = 1 if n is odd

Without loss of generality, we predict response r of $\mathbf{c} = (1, 1, 1, 0, ..., 0)$

$$Q = Q_{12} + Q_{13} + Q_{23} = (n_{12} + n_{13} + n_{23}) + (\delta_{12} + \delta_{13} + \delta_{23})$$

The adversary collects: $(\mathbf{c}_{12}, r_{12}, W_{12}), (\mathbf{c}_{13}, r_{13}, W_{13})$ and $(\mathbf{c}_{23}, r_{23}, W_{23})$ The adversary knows: $(p_{12}, W_{12}), (p_{13}, W_{13})$ and (p_{23}, W_{23}) The adversary knows: $(p_{12}, \delta_{12}), (p_{13}, \delta_{13})$ and (p_{23}, δ_{23}) The adversary computes: $\Sigma = \delta_{12} + \delta_{13} + \delta_{23}$ and then The adversary computes: $p(\Sigma)$ and δ_{Σ} The adversary computes: $p(n) = (p_{12} + p_{13} + p_{23} + p(\Sigma))\%2$ Based on the observation, the adversary predicts r = 0 if p(n) = 0. Otherwise r = 1

Attack 2: Without Helper data W [1/2]

 (\mathbf{c},r) is associated with $(Q, {\bf W}, n, \delta)$ where $Q=n+\delta$

The Observation tells us:

1. If r = 0, then n is even. Otherwise n is odd

2. If W < 0, then $\delta = |0.5 + W|$. Otherwise $\delta = 1 - |W - 0.5|$.

We define p(n) = 0 if n is even and p(n) = 1 if n is odd

Without loss of generality, we predict response r of $\mathbf{c} = (1, 1, 1, 0, ..., 0)$ $Q = Q_{12} + Q_{13} + Q_{23} = (n_{12} + n_{13} + n_{23}) + (\delta_{12} + \delta_{13} + \delta_{23})$

The adversary collects: $(\mathbf{c}_{12}, r_{12}, \mathbf{W}_{12}), (\mathbf{c}_{13}, r_{13}, \mathbf{W}_{13})$ and $(\mathbf{c}_{23}, r_{23}, \mathbf{W}_{23})$ The adversary knows: $(p_{12}, \mathbf{W}_{12}), (p_{13}, \mathbf{W}_{13})$ and $(p_{23}, \mathbf{W}_{23})$ The adversary knows: $(p_{12}, \delta_{12}), (p_{13}, \delta_{13})$ and (p_{23}, δ_{23}) The adversary computes: $\Sigma = \delta_{12} + \delta_{13} + \delta_{23}$ and then The adversary computes: $p(\Sigma)$ and δ_{Σ}

The adversary computes: $p(n) = (p_{12} + p_{13} + p_{23} + p(\Sigma))\%2$

The adversary CAN NOT predict r

PHUONG HA NGUYEN

Attack 2: Without Helper data W [2/2]

 (\mathbf{c}, r) is associated with $(Q, \mathbf{W}, n, \delta)$ where $Q = n + \delta$

The Observation tells us:

1. If r = 0, then n is even. Otherwise n is odd

2. If W < 0, then $\delta = |0.5 + W|$. Otherwise $\delta = 1 - |W - 0.5|$.

We define p(n) = 0 if n is even and p(n) = 1 if n is odd

Without loss of generality, we predict response r of $\mathbf{c} = (1, 1, 1, 0, ..., 0)$

$$Q = Q_{12} + Q_{13} + Q_{23} = (n_{12} + n_{13} + n_{23}) + (\delta_{12} + \delta_{13} + \delta_{23})$$

The adversary focuses on : $\Sigma = \delta_{12} + \delta_{13} + \delta_{23}$ where $0 < \delta_{12}, \delta_{13}, \delta_{23} < 1$

The adversary computes: $Pr(p(\Sigma) = 0) = \frac{2}{3}$ and $Pr(p(\Sigma) = 1) = \frac{1}{3}$

The adversary computes: $p(n) = (p_{12} + p_{13} + p_{23} + p(\Sigma))/2$

The adversary CAN predict r with prediction accuracy = 2/3 > 1/2

Experimental Results

• Ring oscillator dataset:

[Online] http://rijndael.ece.vt.edu/puf/download.html

Table : Theoretical bias vs. Average Observed bias

t	Theoretical Bias (%)	Average Observed Bias(%)
3	(2/3)*100 = 66.66	66.99
4	(2/4)*100 = 50.00	50.05
5	(3/5)*100 = 60.00	56.77
6	(7/13)*100 = 53.84	50.18

1 PUF Introduction

- 2 Classic RO-PUF Design
- 3 Enhanced RO-PUF Design
- 4 Proposed Attacks on Enhanced RO-PUF
- 5 Experimental Results

Conclusion

• Security of the Enhanced RO-PUF is **NOt** guaranteed.

- With helper data *W*: the adversary can predict the response *r* for a given challenge **c** with very high prediction accuracy.
- Without helper data *W*: the adversary can still develop a cryptanalytic algorithm to predict the response *r* for a given challenge **c** with prediction accuracy > 0.5.

• Our future work:

- Improve the efficiency of the attack without helper data *W*.
- Improve the security of Enhanced RO-PUF by modifying the original design.

Thank You for Your Attention Any Question, Please ?